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Drawing Vectors and Vector Notation 

Vectors are quantities with which a direction and magnitude are associated. Scalar quantities only have a 

magnitude associated with them. 

Geometrically, a vector is represented by an arrow. For notation purposes, it is common practice to use a 

character in boldface or a character with a small arrow above it (𝑨 or A⃗⃗ ) to denote a vector. A vector’s 

magnitude – or its scalar value – is denoted by the same character not in boldface or without an arrow 

(𝐴), or by using absolute value signs (|𝑨| or |A⃗⃗ |), and is always positive. 

Visually, vector 𝑨’s magnitude is conveyed by the arrow’s length. The vector’s direction is conveyed by 

the arrow’s orientation (including which end is its tip and which end is its tail). 𝑨’s direction is given in 

terms of an angle 𝜃 above the horizontal. 

 

 Vector 𝑨 

 

The two vectors pictured below have the same direction, but differ in magnitude, making them parallel 

vectors.  Parallel vectors can be found by multiplying a given vector by any scalar quantity with the 

exception of 𝟎. For example, 𝑨’s magnitude is twice that of vector 𝑩, or 𝐴 =  2𝐵. Given this, as well as 

the vectors’ shared direction, we can say that 𝑨 =  2𝑩. 

 

 

 𝑨  

 

In the next example, the magnitudes of both vectors are equal (𝐴 =  𝐶), and their orientations are similar, 

but the tips and tails of the vectors are reversed, meaning the vectors differ in direction. When vectors 

are equal in magnitude, but opposite in direction, they’re called opposite vectors, and are simply a given 

vector multiplied by the scalar quantity −1. In this particular case, 𝑨 =  −𝑪. 

 

 𝑨 𝑪 

    

  

𝜃 

𝜃 

𝐵 

𝜃 

𝜃 

𝜃 
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Vectors 𝑨 and 𝑫 are equal in magnitude (𝐴 =  𝐷), but differ completely in direction. There is no scalar 

by which 𝑨 can be multiplied to equal 𝑫. 

 

 𝑨 𝑫 

 

Vector placement does not have any bearing on vector equivalency. Despite vectors 𝑩 and 𝑬 being placed 

on different corners of the box pictured below (as they might be in a kinetics problem), they are equal in 

both magnitude and direction, making them equivalent vectors. 

 𝑩 

 

 

 𝑬 

 

When working within a coordinate system, we are allowed to orient the coordinate axis to suit our 

purposes. This can make certain vector operations easier. For instance, rotating the axis pictured below 

allows us to treat a two dimensional vector in the 𝑥-𝑦 plane as a one dimensional vector along the 𝑥′-

axis. 

 

 

 

 

 

 

 

  

𝜃 𝜙 

𝑦 + 

𝑥 + 
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 Vector Operations in One Dimension 

Within one dimension, there are only two possible directions a vector can have, greatly simplifying 

vector operations. This single dimension can be represented visually as a number line. 

 

 

Note: Although this particular horizontal number line increases from left to right, it would be just as 

valid for it to be increasing from right to left, or be oriented vertically or diagonally, depending on what 

is most appropriate for the problem at hand. 

To add vectors, we use the tip-to-tail method. This means we position our vector arrows so that the tip 

of one touches the tail of the next. After all vectors have been positioned, we draw a new, resultant 

vector by connecting the tail of our first vector to the tip of our last vector. This resultant vector 

represents the solution to our equation. 

Example 1  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑢𝑚 𝑨 + 𝑩. 

 

 

Visually, we can determine the magnitude direction of the vector arrows in the problem. 

 𝑨 = +6, 𝑩 = −9. 

We find the vector sum by placing 𝑨’s tail at the origin of the number line, then placing 𝑩’s tail at the tip 

of 𝑨. Our resultant vector, 𝑹, is then drawn from the tail of 𝑨 to the tip of 𝑩. 

 

 

 

Our resultant vector 𝑹 has a magnitude of 3 in the negative direction, so we can say 𝑹 = −3.  

Notice that if we had calculated the scalar sum of the vectors, 𝐴 + 𝐵, our result would have been 15 

since we would not have taken the vectors’ direction into account. 

We can perform the vector summation in any order and our resultant vector will not change. This allows 

us to make the general statement that 𝑨 + 𝑩 = 𝑩 + 𝑨. 

  

𝑨 

𝑹 

𝑥 + 𝑥 − 

𝑩 
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Setting Up Vector Operations in Two Dimensions 

Operations involving vectors in two dimensions follow the same rules as those in one dimension. If we are 

given vectors 𝑨 and 𝑩  and add them together, we can draw the resultant vector  𝑹 by placing our arrows 

tip-to-tail. 

 A B 

 

 

Maintaining each vector’s direction, position 𝑩 with its tail at the tip of 𝑨. 

              

 

 

Connect the tail of 𝑨 to the tip of 𝑩 to draw the resultant vector 𝑹. 

 

 

 𝑹  

As with vector operations in one dimension, the order of addition does not change the resultant vector. 𝑨 

can be positioned with its tail at the tip of 𝑩, with 𝑹 connecting 𝑩’s tail to 𝑨’s tip. 

 𝑹 

 

 

We can use opposite vectors and vector addition to find the resultant vector  𝑩 − 𝑨 = 𝑺. 

The vector difference 𝑩 − 𝑨 can be rewritten as the vector sum 𝑩 + (−𝑨). 

 −𝑨 is a vector with the same magnitude as 𝑨, but with the exact opposite direction. Using this opposite 

vector, and our original vector 𝑩, we use the tip-to-tail method to draw 𝑺. 

  

                                    −𝑨                                                                                𝑩 
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    S 

 

 

By introducing vector 𝑪, we can examine what happens graphically in two dimensions when more than 

two vectors are added or subtracted, and when vectors are multiplied.  

  

 𝑨   𝑩       𝑪 

 

Next, we will find the resultant vector 
𝑨

2
+ 𝑩 − 𝑪 = 𝑷. 

Again, we place our vectors tip-to-tail, starting with  
𝑨

2
, which is half as long as 𝑨, and finishing with−𝑪 

which has the same magnitude as 𝑪, but is pointed in the opposite direction. 

  

 

 

 

We finish by connecting the tail of our first vector to the tip of our final vector, giving us our resultant 

vector 𝑷. 

 

 

 

Again, we can perform the sum in any order we want. As long as the tip-to-tail method is followed, the 

same resultant vector 𝑷 will be produced, graphically. 

  

𝑷 

𝑷 
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 Evaluating Vector Operations Using Trigonometry 

Notice that when two vectors are added in two dimensions, they create a triangle. If we are provided 

with enough information, trigonometry can be used to solve vector equations. 

Example 2  𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑹 𝑖𝑓 𝑹 = 𝑪 + 𝑫. 

𝑪 has a magnitude of 7, pointed in the positive 𝑥 direction.𝑫 has a magnitude of 3, pointed in the 

negative 𝑦 direction. We add them using the tip-to-tail method, with an 𝑥-y coordinate system acting as 

our frame of reference.  

 

 

 

 

 

 

We can solve for the magnitude of 𝑹 using the Pythagorean Theorem. 

   𝑅 = √72 + 32 = √49 + 9 = √58 

Since we are looking for a vector quantity, we need to solve for 𝑹’s direction as well. The inverse tangent 

function will allow us to solve for the angle below the positive 𝑥-axis, which is labelled as 𝜃. 

   𝜃 = tan1 3

7
≈ 23° 

So, our resultant vector 𝑹 has a magnitude of √58, pointed 23°below the positive x-axis. 

Other trigonometric methods can be used to solve vector equations that don’t create a right triangle. 

Example 3  𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑷 − 𝑸 = 𝑹.  |𝑷| = 60, |𝑸| = 47 

 

 

 

 

 

 

  

𝑦 + 

7 
𝑥 + 

3 
𝑹 
𝜃 

𝑦 + 

𝑸 

𝑷 

67° 

45° 
𝑥 + 
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We want to convert the difference to a sum, so we position the opposite vector −𝑸 at the tip of our 𝑷 

vector. 

 

 

 

 

 

Recognizing that 𝜃 will be the sum of our angles 𝜃 = (67 + 45)° = 112°, we can use the Law of Cosines 

to solve for 𝑅. 

   𝑅 = √602 + 472 − 2(60)(47)cos (112°) ≈ 89 

Next, we can use the Law of Sines to solve for 𝜙. 

   sin𝜙 =
𝑄 sin𝜃

𝑅
=

47 sin112

89
 

   𝜙 = sin−1 (
47sin112

89
) ≈ 29° 

Finally, we need to add 45°to 𝜙 in order to get 𝑹’s angle above the positive x-axis. 

   (29 + 45)° = 74° 

Our resultant vector 𝑹 has a magnitude of 89, pointed 74° above the positive x-axis. 

 

 Evaluating Vector Operations Using Rectangular Components 

Although many vector problems can be solved using trigonometry alone, it becomes more difficult to do 

once more than two vectors are involved. By resolving vectors into their components, vector operations 

involving more than two vectors become much easier to solve. 

Using a coordinate system as a frame of reference, we can view any given vector as the sum of two 

vectors, one parallel to each of our chosen axes. 

Once we have resolved our vectors into their components, we can begin performing vector operations: 

To perform vector addition or subtraction using rectangular components, we add or subtract all 

components along each axis to find the resultant component along that same axis.  

To perform scalar multiplication using vector components, we multiply each component by the scalar. 

  

𝑥 + 

𝑦 + 
𝑹 

60 

47 

𝜃 

𝜙 
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Example 4   𝐹𝑖𝑛𝑑 2𝑨 + 𝑩 + 𝑪 = 𝑹 𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.   

 

 

 

 

 

 

 

 

 

 

 

Our first step is resolving each vector into their 𝑥 and 𝑦 rectangular components. We do this using 

trigonometry. 

   𝐴𝑥 = 5cos 36.87° = 4 

We could calculate 𝐴𝑦, or recognize that 𝑨𝒙, 𝑨𝒚 , and 𝑨 form a 3-4-5 triangle. 

   𝐴𝑦 = 3 

Similarly, we can see that 𝑩𝒙, 𝑩𝒚 , and 𝑩 form a 30-60-90 triangle, which means 𝐵𝑥 =
𝐵

2
. Also, notice 

that both of 𝑩′𝑠 components point in the negative direction of their respective axis. This is represented 

by a negative sign on each component. 

   𝐵𝑥 = −
7

2
= −3.5  

   𝐵𝑦 = −√72 − 3.52 = −6.06 

Finally, 𝑪 only has one component with a magnitude of 1 in the negative x direction. 

   𝐶𝑥 = −1 

With all of our components calculated, we now perform the vector operations.  

   𝑅𝑥 = 2𝐴𝑥 + 𝐵𝑥 + 𝐶𝑥 = 2(4) + (−3.5) + (−1) 

   𝑅𝑥 = 3.5 

  

1 

𝑦 + 

𝑥 + 

𝑨 𝑨𝒚 

𝑨𝒙 

5 

𝑩 

36.87° 

7 
30° 

𝑩𝒙 

𝑩𝒚 

𝑪 
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   𝑅𝑦 = 2𝐴𝑦 + 𝐵𝑦 + 𝐶𝑦 = 2(3) + (−6.06) + (0) 

   𝑅𝑦 = −0.06 ≈ 0 

After rounding, we find that our resultant vector only has a positive x component of 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 Unit Vector Notation 

A unit vector is a vector with a magnitude of 1 in the positive direction along each axis. The unit vector 

for the x-axis is labelled �̂� (i-hat), and the unit vector for the y-axis is labelled  𝒋̂ (j-hat). 

By multiplying �̂� by the x-component of a given vector, and 𝒋̂ by the y-component of a given vector, then 

summing the terms, we can express a given vector as the sum of their components. 

 

Example 5  𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑨, 𝑩 𝑎𝑛𝑑 𝑪 𝑓𝑟𝑜𝑚 𝒆𝒙𝒂𝒎𝒑𝒍𝒆 𝟒 𝑎𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠. 

   𝑨 = 4 �̂� + 3𝒋̂  

   𝑩 = −3.5�̂� − 6.06�̂� 

   𝑪 = −1 �̂� + 0𝒋̂ = −1�̂� 

Our resultant 𝑹 can be calculated in terms of these unit vectors. 

   𝑹 = (2(4) − 3.5 − 1) �̂� + (2(3) − 6.06)𝒋̂  

   𝑹 = 3.5 �̂� + 0𝒋̂ = 3.5�̂� 

  

3.5 

𝑦 + 

𝑥 + 
𝑹 


